
Toward Developing Reusable Software
Components for Robotic Applications

Issa A.D. Nesnas, Richard Volpe, Tara Estlin, Hari Das, Richard Petras, Darren Mutz
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91106

Abstract- We will present an overview of the
CLARAty architecture which aims at developing reusable
software components for robotic systems. These com-
ponents are to support autonomy software which plans
and schedules robot activities. The CLARAty architec-
ture modifies the conventional three-level robotic archi-
tecture into a new two-layered design: the Functional
Layer and the Decision Layer. The Functional Layer pro-
vides a representation of the system components and an
implementation of their basic functionalities. The Deci-
sion Layer is the decision making engine that drives the
Functional Layer. It globally reasons about the intended
goals, system resources, and state of the system and its
environment. The Functional Layer is composed of a set
of interrelated object-oriented hierarchies consisting of
active and passive objects that represent the different
levels of system abstractions. In this paper, we present
an overview of the design of the Functional Layer. The
Functional Layer is decomposed into a set of reusable
core components and a set of extended components that
adapt the reusable set to different hardware implemen-
tations. The reusable components: (a) provide interface
definitions and implementations of basic functionality,
(b) provide local executive capabilities, (c) manage local
resources, and (d) support state and resource queries by
the Decision Layer.

I. INTRODUCTION

With the increased interest in developing rovers for
future Mars exploration missions, a significant number
of rover platforms have been designed and built in the
last few years. Researchers and engineers at the Jet
Propulsion Laboratory, California Institute of Technol-
ogy, NASA Centers, and universities use these plat-
forms to test new concepts and validate algorithms for
the control and operation of autonomous robotic vehi-
cles. Because of the differences in the mechanical and
electrical design of these vehicles, they share little in
terms of software infrastructure. Transferring capabil-
ities from one rover to another has been a major and
costly endeavor because: (i) physical capabilities dif-
fer from one rover to another, (ii) rovers have differ-
ent control and software architectures, and (iii) rovers
are complex systems that integrate many disciplines.
Because robotics systems cover several domain areas,
researchers of a single domain need to integrate their
newly developed technology into the complex robotic
environment. Proper integration requires an in-depth
understanding and characterization of the behavior of
various components of the system, which vary from one
platform to another.

The CLARAty architecture, which stands for Cou-
pled Layered Architecture for Robotic Autonomy, aims
at developing flexible and reusable software components
for robotic systems [20]. These components are in-
tended to support autonomy software which plans and
schedules robot activities. The CLARAty architecture
modifies the conventional three-level robotic architec-
ture into a new two-layered design: the Functional
Layer and the Decision Layer. The Functional Layer
provides a representation of the system components and
an implementation of their basic functionalities. The
Decision Layer is the decision making engine that drives
the Functional Layer.

One of our goals is to provide a design that allows
non-experts in a domain to use and integrate these com-
ponents in their applications. To do so, we need to
capture well-understood and well-developed knowledge
from the various domains into generalized components.
Just like an operating system provides a level of ab-
straction from the computational hardware, so does the
Functional Layer provide a level of abstraction for the
robotic systems.

11. BACKGROUND

There has been several efforts focused on developing
robotic architectures. Typical robot and autonomy ar-
chitectures are comprised of three levels - Functional,
Executive, and Planning levels [l] [lo] [17]. Some ar-
chitectures emphasized one area over others and thus
became more dominant in that domain. For example,
some architectures emphasized the planning aspects of
the system [7] [8], others emphasized the executive [4]
[lS], while others emphasized the functional aspects of
the system [19] [14] [16]. There is on-going research in
activities aimed at blurring the distinction between the
planning and executive layers [9] [ll]. Other architec-
tures did not explicitly follow this typical breakdown.
Some focused on particular paradigms such as a fuzzy-
logic based implementation [12] or a behavior-based im-
plementation [2] [5]. There has been considerable effort
in architectures that addressed multiple and cooperat-
ing robots [15] [13].

One difference between the CLARAty architecture
and the conventional three-level architectures is the ex-
plicit distinction between levels of granularity and levels
of intelligence. In conventional architectures both gran-

2

In a third implementation, one might close the feed-
back loop using software running on an embedded pro-
cessor. While these are three different implementations
of a motion control system, the behavior requirements
of the controlled motor are the same. In any of these
implementation, you would still like to do position com-
manding, velocity profiling, and trajectory control. You
would also like to detect and report stall conditions and
be able to interrupt the motion. You would also like to
read the current and desired positions, velocities, ac-
celerations, and health status. For a person developing
vision-based navigation component for a mobile robot,
it is only necessary to understand the behavior of the
component rather than be required to have intimate
knowledge of the implementation and hardware details.
Nor should they have a particular implementation inad-
vertently influence their design of vision-based naviga-
tion algorithms. The Motor and CoordMotors are an
abstract representation for motion control that define
what the components are supposed to do. These com-
ponents hide the details of the implementation without
compromising particular features of the hardware.

Another example is that of an imaging system. The
primary function of such a system is to acquire images.
How the imaging system acquires the image depends,
largely, on its implementation. In some systems, an
analog camera is connected to a framegrabber mounted
in a computational backplane. In other systems, a digi-
tal camera is used and the image is transmitted through
a fast serial interface directly to the host memory. In
either case, the primary function of the imaging sys-
tem remains the same, i.e. to acquire images. We can
represent such a system by an abstract Camera com-
ponent that publishes a uniform interface for acquiring
and synchronizing image acquisition but hides the de-
tails of its implementation and the runtime models.

B. Component Classification
We will present a classification based on the abstract

physical and functional components of the system that
we have been evolving over several years. We use an
object-oriented system decomposition to provide sev-
eral abstractions for the components of the systems.
Physical abstract components are extended to concrete
components that tie into real-system or to simulation
components that tie into virtual systems. Components
are implemented using classes. The terms are used in-
terchangeably in this article.

There are three main types of classes in our h n c -
tional Layer: (1) data structure classes, (2) generic
classes (physical and functional), (3) specialized classes
(physical and functional). All three types of classes con-
tain domain knowledge from different disciplines. They
are integrated in a framework to maximize code reuse,
eliminate duplicated functionality, and simplify code in-
tegration. As a result, there are relationships and de-

3

pendencies among the various classes. Together they
provide a modular but well-integrated solution.

Next, we will describe these different types of classes.
A description of the relationships among these compo-
nents will follow.

C. Relationships among the Different Components

There are two types of relationships among these
components: inheritance, and aggregation [6]. As we
have just seen, the relationship between generic and
specialized components is that of inheritance. Special-
ized classes are derived from the generic classes. Both
generic and specialized classes are of the same type. In
aggregation, however, the aggregated component has a
different type than that of the aggregate. Aggregation
is used to provide components with different levels of
granularity. For example, a Manipulator class aggre-
gates lower-level Motor class and Link class objects.

The reason why such a decomposition of robotic sys-
tems is possible is that components at the lower levels of
granularity can be implemented with little or no knowl-
edge of their neighboring components. In other words,
the coupling among low-level components is loose for
the most part. The coupling among these compo-
nents increases as we move to higher-level components.
Higher-level components aggregate lower-level compo-
nents and manage the interaction of their subordinate
components. This approach abstracts the functional-
ity of components and reduces the complexity of the
system significantly.

IV. DATA STRUCTURE CLASSES
The data structure classes are classes that provide

handling, transformation, and storage of data. One
characteristic of data structures is that they do not have
any executive capability, making them the easiest to im-
plement and port on multiple operating systems. While
their efficiency is very important, they themselves do
not invoke other threads (tasks). However, they must
be reentrant to support being simultaneously executed
by different threads.

Data structures are the most reused components in
the system. There is not a single data structure that
dominates in the architecture; but there are several
types that are used throughout the Functional Layer.
The challenge in the design of data structures is to en-
hance their reusability across the different robotic do-
mains.

There are two types of data structures relevant to
our discussion: (1) general-purpose data structures,
and (2) domain-specific data structures. General-
purpose data structures are reusable beyond the scope
of robotics applications. Therefore, whenever suitable,
we leverage standardized developments of these gen-
eral data structures, such as the Standard Template
Library [3]. Whenever such implementations are not

Fig. 2. The Arrayclass hierarchy

available for real-time operating systems, or whenever
they impose constraints that are not appropriate for
robotic applications, we replace them with alterna-
tive customized implementations maintaining the same
interface. Examples of general-purpose data struc-
tures are: Array, Vector, Matrix, B i t , LinkedList,
Map, Container, String and so on. Examples of do-
main specific data structures are: Image, Message,
Resource, Location, HTrans(homogeneous transfor-
mation), quaternion and so on.

Some domains impose certain constraints on the de-
sign and implementation of their data structures. For
example, a two-dimensional array class created by in-
stantiating a vector of a vector using the vector class
of the Standard Template Library (STL) cannot serve
as a parent for our Matrix class, which in turn is a
parent class for our Image class. The Image and
Matrix classes must have contiguous memory alloca-
tions of their elements for efficient processing. The pro-
cessing requirements of these two derived classes impose
certain constraints on the design of their base class. In
other words, a trade-off is made in favor of efficiency
over flexibility of the data structure, which influences
the design of the Array/ Matrix/ Image hierarchy. Fig-
ure 2 shows the current relationships between these
data structures expressed using the Unified Modeling
Language (UML) [6].

V. GENERIC CLASSES

Generic classes are classes that provide an abstract
description and implementation of the behavior of a
component. Generic classes can be active, i.e. their ob-
jects can generate separate threads of execution and run
within multiple threads. In other words, these classes
can have local executive capability. For example, a
Motor class can generate two threads of execution: one
for control and the other for feedback. Some classes
also have local planning capabilities. There are two
types of generic classes: generic physical classes (GPC)
and generic functional classes (GFC).

4

Generic Physical Comp

Public 1-1

Fig. 3. A typical generic physical component structure

A . Generic Physical Classes

A generic physical component (GPC) is a class that
defines the structure and behavior of a physical object
in an abstract sense. These type of classes expose the
capabilities of the components independent of the un-
derlying hardware configuration. Some of these classes
have partial implementations since they are eventually
attached to physical/simulation objects that complete
their implementation. The objects to which they at-
tach are of the same type. The extent of the im-
plementation depends on the knowledge available to
that class at that particular level of abstraction. Ex-
amples of such classes are: Motor, Jo in t , Wheel,
A r m , Mast, Locomotor, Rover, Camera, F i l t e r m e e l ,
Gyro, DigitalIO, AnalogIO, Socket, and SunSensor.
These components appear at different levels of granular-
ity in the Functional Layer. Figure 3 shows an illustra-
tion of a typical generic physical component. The char-
acteristics of these generic components are that they:

Represent an abstract view of a physical entity.
Attach to concrete physical classes of the same
type. The physical classes complete the implemen-
tation of the generic class interface.
Provide generic public interfaces that supports dif-
ferent physical implementations. The interfaces
define the functionality and services of the com-
ponent.
Provide the runtime model for component’s opera-
tion.
Manage local atomic resources and resolve local
conflicts.
Encapsulate the states of a component and provide
access to the states through their public interface.
The Decision Layer can query any state of a com-
ponent at any time.
Provide local state estimation based on information
available within the scope of the component. May
attach to external generic estimators (e.g. Kalman

Filter)
Provide resource usage prediction in response to
queries from the Decision Layer.
May have internal state machines.
May include or reference other generic physical
components. Such components are made publicly
accessible to allow access to subordinates.

A.l The State and StateHandler Classes
Components use state variables for logging, track-

ing, and recovery strategies. Components can have nu-
merous state variables depending on what states are
interesting to a particular application. State informa-
tion can have different forms. It may be contained in
a software variable or a hardware register. To track
hardware registers, state variable are created to mirror
these registers. Doing so enables tracking and logging
of a particular state for planning and recovery purposes.
Typical components can have tens of states.

A S ta t e class is designed to provide a uniform han-
dling of all state variables. The S t a t e is a template-
based class that wraps the actual state variable. State
variables can be represented by integers, vectors, ma-
trices, bit patterns, and so on. The S t a t e class tracks
transitions, time-tags and logs state history. Internal
state machines keep track of current states and allow-
able state transitions. The S ta t e class can attach to
an external StateHandler class, which provides addi-
tional global functionality such as the periodic monitor-
ing of any selected subset of the system’s states. Such
state tracking can be selectively disabled or completely
eliminated for applications that do not require this fea-
ture.

State information can only be accessed through the
state query interface. States can be internally moni-
tored by the component or externally monitored by the
StateHandler, other components, or by the Decision
Layer. A public or private operation of a particular
component can create a new internal thread to monitor
a state variable and act on state transitions. A single
state can be monitored by several components simulta-
neously (i.e. from several threads of control). To do so
successfully, the State class implementation must be
reentrant.

A.2 State Estimation

Like state variables, the state estimation can have
different forms. The estimation of the local state is
implemented within the scope of the component and
may be implemented in software, hardware, or a com-
bination of both. If there is redundancy in the infor-
mation available to a component, it is used to provide
better estimates of the state. While estimation of a
state is typically limited to the knowledge available to
the component, more sophisticated estimates can be ob-
tained by querying higher-level components that have

5

larger scope. State estimation occurs upon request, ei-
ther external or internal, at which time the component
executes the proper estimation operation, updates the
state variable, and returns the estimate.

A.3 Resource Queries
In addition to state queries, these components sup-

port resource queries. At any time, a component can be
queried about the resources required to execute an op-
eration and returns the information to the client. The
information can be in the form of a single number, a
vector presenting the resource usage profile, or a set of
profiles.

A.4 Local Execution and Planning
Both generic physical and functional components can

have local executive and planning capabilities. While
this is limited to the scope of the component, higher-
level components enjoy executive control over their sub-
ordinates. Global resources, such as power and mem-
ory, that couple all components of the system are man-
aged by the Decision Layer. In some sense, the Func-
tional Layer provides different granularity of baseline
functionality for the Decision Layer. Higher-level com-
ponents hide the complexities of their subordinates.

B. Generic Functional Components

A generic functional class (GFC) is an abstract
class that describes the interface and functionality of
a generic algorithm. It provides a framework for im-
plementing complex functional algorithms. A generic
functional class can have a complete implementation of
its functionality because it interfaces with generic phys-
ical classes. Generic functional components are simi-
lar in structure to generic physical components except
that they do not attach to hardware or simulation com-
ponents. Examples of generic functional components
are: TrajectoryGenerator, ObjectFinder, Visual-
Navigator, Stereovision, and Localizer. The
S t a t e class presented above is also an example of a
generic functional component.

Generic functional components may sometimes
use generic physical components in their imple-
mentation. An example of such a class is the
VisualOdometer class. This class implements an algo-
rithm that combines robot motion estimates with visual
information to provide accurate position estimates. It
uses the Camera (GPC) class to acquire successive im-
ages and the Locomotor (GPC) class to get a dead-
reckoning estimate of the robot’s motion. It then com-
bines the information to provide an a refined estimate of
the robot’s position. Another example of a generic func-
tional component is the RoverLocalizer class, which
uses stereo vision from the mast of the rover to improve
position estimation. This class uses generic Mast and
Camera classes in its implementation.

Similar to generic physical components, generic func-
tional components publish their interfaces and hide
their internal implementations. The complexity of these
components varies from one type to another. However,
they should all provide an easy to use interface for the
novice user.

In addition to executive capabilities, certain generic
functional components may have local planning capabil-
ities. One such example is the VisualNavigator class,
which uses vision to plan paths and avoid obsta-
cles. The VisualNavigator class uses Camera and
Stereovision classes for image acquisition and three-
dimensional map generation respectively. Using this
information, it plans a feasible path in its environment.
The VisualNavigator class has local planning capabil-
ities considering only the knowledge of its aggregated
components. If the VisualNavigator class is capa-
ble of generating multiple paths, the results will be re-
ported to the Decision Layer for a final selection. The
Decision Layer has a larger scope than the Visual-
Navigator class and carries out global planning and
optimization taking into consideration resource con-
straints and other goal requirements of the system.

VI. SPECIALIZED CLASSES

Specialized classes are extensions of the generic
classes that adapt the generic components to a partic-
ular robotic platform. This is known as the adaptation
process and these specialized classes are also known as
the adaptor classes. Specialized classes complete the
implementation of their generic counterparts and may
override some default implementation if necessary.

Similar to their generic counterparts, these special-
ized classes can have executive capabilities. These exec-
utive capabilities encapsulate the details of the thread-
ing model and implementation that are unique to an ex-
isting hardware platform. Such encapsulation enables
the design of higher-level abstractions (generic classes)
without worrying about system specific details.

Just like the generic classes, there are two types of
specialized classes: specialized physical classes (SPC)
and specialized functional classes (SFC). The special-
ized nature of these classes makes them suitable for
single use only.

A . Specialized Physical Classes
A specialized physical class is a class that adapts the

functionality of a generic class to a particular hard-
ware component. A specialized class is derived from
its generic counterpart. It completes the implementa-
tion of its generic parent and in some cases overrides
the generic implementation by one that is suited for the
particular robotic system. In short, they tie the generic
components to the actual hardware components.

This process is by far the most difficult and ardu-
ous task. Each hardware component comes with its

6

w Motor

ControlledMotor

~

@l(,:'::'Y; ~ , i i , ~ ; R7-ControlledMotor FIB-Controlledktor

1 1 1

VPARlO-Board LM629-Chlp HCTL1100-Chip 12C

Fig. 4. Generic and Specialized Motor classes

own architecture and theory of operation. Each generic
component also provides its own behavior and theory of
operation. Putting the two together without careful de-
sign can result in an architectural mismatch and poor
system performance. Ideally we would like to lever-
age the features of the hardware architecture and at
the same time fit it "nicely" into the generic compo-
nents. This is the job of the specialized classes, which
implement the behavior defined by the generic compo-
nents using the functionality provided by the hardware
components. A complete match of functionality cannot
always be accomplished. Therefore, these specialized
classes must adapt the hardware to the behavior to the
extent possible.

An example of specialized physical classes are shown
in Figure 4. The ControlledMotor class is the GPC
that provides the interface and partial functionality of
controlled motor operations. Two classes are special-
ized from this class: the R7-ControlledMotor which is
used in the Rocky 7 rover and the R8Xontrolled-
Motor which is used in the Rocky 8 motor. The
Rocky 7 implements its motor control using a shared
parallel bus (implementing using the digital 1/0 board
- VPAR10) and a Rocky 8 implements its motor control
using HCTL-1100 control chips and the serial 12C bus.
The relationship of these to the ControlledMotor class
is through inheritance and aggregation. This pattern
allows users to instantiate a ControlledMotor object
using either one of the specialized classes.

B. Specialized Functional Classes

A specialized functional class is a class that is de-
rived from its generic counterpart: the generic func-
tional class. It is only used in cases where an applica-
tion requires more than parameter adjustments of the
algorithms. This specialized adaptation allows the user
to modify the functionality of the generic algorithms
and override certain operations for a particular imple-
mentation. These classes are not very common.

Specialized classes are typically application specific.
In some cases, the generic component types and their

' Fig. 5. Generic and Specialized Manipulator classes

interfaces are not sufficient for a particular implemen-
tation of an algorithm. As a result, an extended version
of the generic component can be used instead. Using
the extended classes instead of their generic counter-
parts limits the portability to different robotic plat-
forms. Algorithms that use generic component types
in their implementation will operate using any special-
ized (derived) types.

VII. AN EXAMPLE OF THE MANIPULATOR CLASS
HIERARCHY

Consider the Rocky 8 implementation of manipula-
tion. Rocky 8 is a Mars rover prototype that has a four
degree-of-freedom (DOF) mast and a four DOF arm.
Figure 5 shows the manipulator class hierarchy and its
relationship with its parent, aggregates, and children.
At the top of this hierarchy is the Manipulator class
which is a generic physical component. This class is
derived from the CoordMotors class. It also aggregates
a variable number of ControlledJoint and Link ob-
jects. In other words, a manipulator is a system of co-
ordinated motors that has a number of links and joints.
The Manipulator class provides generic functionality
such as individual joint mode control and global veloc-
ity/acceleration control. It also contains strategies for
recovery from error conditions. Additionally, it pro-
vides hooks for attaching to various end effectors.

Two manipulator types can be derived from the
Manipulator class: the Serial-Manipulator class and
the Parallel-Manipulator class. A serial manipula-
tor is a robotic arm that concatenates a number of
joints and links. A parallel manipulator is a mechanism
whose links are attached in parallel to an output plane.
An example of a parallel manipulator is the Stewart
platform that is used in motion simulators. There is
a duality in the equations governing the kinematics of
serial and parallel manipulators. Serial manipulators
have relatively simple forward kinematics while parallel
manipulators have relatively simple inverse kinematics.
Hence, the Serial-Manipulator class has the generic

7

forward kinematic equations that will apply to all types
of serial manipulators, while the specialized R8Arm will
have the closed-form inverse kinematics for the partic-
ular arm. Similarly, the ParallelManipulator class
will have the generic inverse kinematics. There are nu-
merical methods for solving general inverse kinematic
problems for serial manipulators. These can also be
made available in the Ser ia lAanipulator class. Hy-
brid manipulators that combine both serial and parallel
linkages are represented by a separate class (not shown
here).

A serial manipulator can be used as an arm or a leg
for a robot. It can be mounted on a fixed platform
or on a mobile robot. Each of these options requires
additional functionality and behavior that a serial ma-
nipulator must support. For example, it is helpful for
a manipulator mounted on a mobile platform to know
about the mobility system and be able to control it
in some cases. One such case is when you are tele-
operating this arm. If the arm was not aware of the
mobility system, as you extend the arm to the edge
of its workspace, the arm loses dexterity and soon be-
comes singular. But because the arm knows that it is
mounted on a mobile platform, then the arm can com-
mand the mobility system to advance the robot slightly
so as to shift the workspace of the arm forward, keeping
the arm in the most dexterous region of its workspace.
The arm interface remains the same but its functional-
ity and workspace are extended. This functionality can
be implemented within a MobileManipulator class,
which uses a generic Locomotor class in its implemen-
tation. The MobileAanipulator is derived from the
SerialManipulator class. One type of mobile ma-
nipulator is the RoverAanipulator class. In addition
to supporting the functionality of a mobile manipula-
tor, the RoverManipulator class extends the interface
of the MobileManipulator class to include additional
operations, such as stow(), unstow0 and other rover
specific functionality.

Consider the Rocky 8 rover, which defines two special-
ized classes derived from the RoverAanipulator class.
They are the R8Mast class and the R8Arm class.
These classes define the joint configuration and parame-
ters, link types and dimensions, inverse kinematics, and
other properties unique to these manipulators.

During the adaptation process of the arm and mast
software, the generic Rover-Manipulator class is spe-
cialized to an R 8 4 r m and an R8Mast classes. The
RoverAanipulator class provides generic forward and
inverse kinematics, joint motion control, trajectory
tracking, conditional motion, and error recovery. The
specialized R8Arm and R8Aast classes specify the link
dimensions, joint limits, actuator types, and end effec-
tor type. They also override the generic kinematics of
the Manipulator class with the closed-form kinematics
that are specifically derived for these instances.

Fig. 6 . The Rocky 7 rover and the PDM mockup

VIII. EXPERIMENTAL RESULTS - RUNNING ON
DIFFERENT PLATFORMS

A . System & Computing Architecture of Rocky 7

Rocky 7 is a Mars rover prototype that has six drive
wheels with a rocker-bogey mobility mechanism. It has
two steerable front wheels and four non-steerable back
wheels. Mounted onto the rover platform are two ma-
nipulators: a two degree-of-freedom (DOF) arm with
two independently actuated scoops, and a three degree-
of-freedom mast. The arm has a shoulder roll and a
shoulder pitch, while the mast has an additional el-
bow pitch. Three pairs of stereo cameras are mounted
on the rover: a stereo camera pair is mounted on the
mast, and two stereo camera pairs are mounted on the
front and back sides of the vehicle. The computing sys-
tem consists of a 3U VME backplane with a 60 MHz
68060 processor with on-board Ethernet, two CXlOO
frame-grabbers, a VPARlO digital 1/0 board, and a
VADC2O analog 1/0 board. The main processor runs
a VxWorks 5.3 real-time operating system. Each actu-
ator (DC brushed) is controlled by a separate micro-
controller (LM629) using an 8 bit parallel bus through
the VPAR10. The on-board processor communicates
with an external host via a wireless Ethernet.

8

B. System tY Computing Architecture for PDM mockup

The PDM mockup is a fixed manipulation platform
with a 4-DOF arm and a 4-DOF mast mounted onto
the platform. Both the mast and the arm have a simi-
lar joint configuration which include a shoulder roll, a
shoulder pitch, an elbow pitch and a wrist pitch. The
arm has a single DOF gripper while the mast has a
stereo camera pair. The computing system is different
than Rocky 7 and consists of a 3U cPCI backplane with
a 300 MHz Pentium processor with on-board Ethernet,
two PX610 frame-grabbers, and a Sensoray digital 1/0
board. The main processor runs a VxWorks 5.3 real-
time operating system. Each actuator (DC brushed)
is controlled by a separate micro-controller (LM629)
connected to the Sensoray board 1/0 board. The on-
board processor communicates with an external host
via a wired Ethernet at a maximum throughput of 10
MB/sec.

C. Implementation Results

The Rocky 7 rover and the PDM mockup have dif-
ferent physical characteristics as well as different hard-
ware implementations. Parts of the CLARAty Func-
tional Layer has been implemented and tested on both
systems. On the Rocky rrover, we were able to demon-
strate parallel execution of arm, mast and mobility op-
erations. We also demonstrate continuous driving and
autonomous vision-based sample acquisition with par-
allel execution of the vision processing and the drive
commanding. On the PDM mockup, we were able
to demonstrate vision-based sample acquisition from
a fixed platform sharing about 60% of the Functional
Layer code. This percentage will increase as we further
develop the generic framework. The proposed architec-
ture was flexible, easy to use, and light-weight (memory
and speed). Simultaneous multiple task operations were
easy to invoke even when there are shared resources that
needed to be resolved at high context switching speeds.
For example, both systems used a shared 8 bit paral-
lel bus to control their actuators). This resource was
managed locally within the ControlledMotor class.

IX. FUTURE WORK
We plan to continue the development of the Func-

tional and Decision Layers of the CLARAty architec-
ture. We will be implementing the interface between
the two layers for the resource queries. We will also
develop the various domains of the Functional Layer
which include Input/Output, Motion Control, Mobility
and Navigation, Manipulation, Perception and Vision,
Resource Management, System Control, Communica-
tion, and Sensor and Instrument Processing packages.

X. ACKNOWLEDGMENTS
The work described in this paper was carried out at

the Jet Propulsion Laboratory, California Institute of
Technology, under a contract to the National Aeronau-
tics and Space Administration.

REFERENCES
R. Alami et al. An Archtecture for Autonomy. International
Journal of Robotics Research, 17(4), April 1998.
Ronald C. Arkin. Motor schema based mbilt robot naviga-
tion. Int'l Journal of Robotics Research, 4(8):92-112, 1989.
Matthew H. Austern. Generic Programming and the Stl:
Using and Extending the C++ Standard Template Library.
Addison-Wesley Professional Computing Series, Reading,
MA, October 1998.
J . Borrelly et al. The ORCCAD Architecture. International
Journal of Robotics Research, 17(4), April 1998.
Rodney A. Brooks. A robust layered control system for a
mobile robot. IEEE Thnsactions on Robotics and Automa-
tion, 2(1):14-23, 1986.
Bruce Powel Douglas. Real-Time UML - Developing Efi-
cient Objects for Embedded Systems. Addison-Wesley Long-
man, Inc., Reading, MA, December 1998.
Tara Estlin, Gregg Rabideau, Darren Mutz, and Steve
Chien. Using continuous planning techniques to coordinate
multiple rovers. In Proceedings of the IJCAI99 Workshop
on Scheduling and Planning meet Real-time Monitoring in
a Dynamic and Uncertain World, Stockholm, Sweden, Au-
gust 1999.
R. Firby. Adaptive Execution an Complex Dynamic Worlds.
PhD thesis, Yale University, Department of Computer Sci-
ence, 1989.
Forest Fisher, Steve Chien, Leslie Paal, Emily Law, Nassar
Golshan, and Michael Stockett. An automated deep space
communications station. In Proceedings of the 1998 IEEE
Aerospace Conference, Aspen, CO, March 1998.

[lo] E. Gat. On Three-Layer Architectures. In D. Kortenkamp,
R. Bonnasso, and R. Murphy, editors, Artificial Intelligence
and Mobile Robots, Boston, MA, 1998. MIT Press.

[ll] R. Knight, S. Chien, T. Starbird, K. Gostelow, and R. Keller.
Integrating model-based artificial intelligence planning with
procedural elaboration for onboard spacecraft. In Proceed-
ings of Space Ops 2000, Toulouse, France, June 2000.

[E] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti. The
saphira architecture: A design for autonomy. Journal of Ex-
perimental and Theoretical Artificial Intelligence, 9(1):215-
235, 1997.

[13] Maja J. Mataric. Behavior-based control: Examples forom
navigation, learning, and group behavior. Journal of Exper-
imental and Theoretical Artificial Intelligence, 2-3(9):232-
336, 1997.

[14] LA. Nesnas and M.M. StaniBiC. A robotic software developed
using object-oriented design. In ASME Design Automation
Conference, Minnesota, 1994.

[15] Lynn Parker. Alliance: An architecture for fualt tolerant
multi-robot coorperation. In ORNL TM12920, Oak Ridge
National Laboratory, Oak Ridge, T N , 1995.

[16] G. Pardo-Castellote S. Schneider, V. Chen and H. Wang.
Controlshell: A software architecture for complex electrome-
chanical systems. Int'l Journal of Robotics Research, 17(4),
April 1988.

[17] R. Simmons and D. Apfelbaum. A Task Description Lan-
guage for Robot Control. In IEEE/RSJ Intelligent Robotics
and Systems Conference, Vancouver Canada, October 1998.

[18] Reid Simmons and David Apfelbaum. A task description
language for robot control. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems, Van-
couver, Canada, October 1998.

[19] Mobility Software. http://isrobotics.com/rwi/software.htm.
Real World Interface, a division of IRobot, Somerville, MA.

[20] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and
H. Das. The claraty architecture for robotic autonomy. In
Proceedings of the 2001 IEEE Aerospace Conference, Big
Sky, Montana, March 2001.

http://isrobotics.com/rwi/software.htm

